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"he modified Oseen linearization of the swirling-flow boundary layer of a mature 
hurricane is discussed. Upper and lower solutions for the radial and azimuthal 
velocity components are constructed in a subdomain by using a comparison 
theorem. It is shown that the error incurred in these velocity components by 
using the linear solution is no more than 30% in the subdomain. It is then 
inferred that the vertical velocity is also approximated to that order. 

1. Introduction 
In  1971, Carrier, Hammond & George studied a model of the mature hurricane. 

In the same year, Carrier (1971) studied an Oseen-like linearization of the 
boundary-layer equations which arise in swirling flows over a rigid boundary in 
a rotating container. The purpose of that study was to construct simple, yet 
reasonably accurate, approximate solutions to the set of nonlinear parabolic 
equations. 

This method of linearization has often been used in fluid-mechanical problems 
and is applicable to a much wider class of problems than the swirling boundary 
layer. It is therefore desirable to consider whether an error estimate can be 
obtained in a rigorous manner, in so far as conveniently possible. The purpose 
of this study is to construct such an estimate. Here also it is the procedure that is 
of primary interest. 

We first re-examine the linearized system to obtain a solution slightly different 
from that given in Carrier (1971). We then use a comparison theorem due to  
Nagumo (1939) and Westphal (1949) to obtain an error estimate. It is seen that 
the linearization procedure is quite accurate (the precise meaning of this is given 
in $7), and the 30 yo error suggested by Carrier appears well within reason. 

I n  $2, we formulate the problem and its linearization. In  $3,  we discuss 
the nature of the linearized solution. In  $ 4, we discuss how the constants used in 
the linearization can be determined. In  $5, we state the Nagumo lemma and the 
necessary definitions. In  $9 6 and 7, we construct upper and lower solutions for 
the radial and azimuthal velocity components by using the comparison theorem. 
We conclude by inferring that the vertical velocity is approximated by the 
linear solution to within 30 %. 
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2. Formulation 
Let (r, 8, z )  be cylindrical co-ordinates and (u, v, w) be the velocity components 

in the directions of increasing (r, 8,x). The system of equations to be considered 
is (Carrier et al. 1971) 

uur + wu, - v2/r - 2Qv + V2/r + 2Q V = U U ~ ,  

u(rv), + w(Tv),+ 2d( ru )  = ~ ( T V ) ~ ,  

rw, + (ru), = 0, 

0 < r, < T < r0, 

< 0 in (rl, ro). 

0 < z < 00. 

Here, d and v are positive constants, and V = V ( r )  is a given function with the 
property that V > 0 and 

The boundary conditions to be imposed on (u, v, w )  are that they vanish on 
z = 0, coincide with the Ekman solution as r - f r o  and satisfy u = 0 and v = V(T)  
as z tends to infinity. 

We introduce non-dimensional quantities as follows: 

V' = rV/Yo, v' = rv/Yo,  u' = ru/Yo,  

2' = x(ZQ/v)t ,  w' = W/(2YQ)4, x = T 2 Q / Y o ,  

where Yo is a dimensional quantity which characterizes the strength of the 
hurricane. In  terms of the non-dimensional quantities, and dropping the primes, 
we have 

(1)  

(2) 

(3) 

uu, + wu, f (V2- v2- u2)/2x + ( V -  v) = u,,, 

uv, + wv, 4- u = v,,, 

u, + w, = 0, 

0 < X I  < x < xo, 0 < Z < 00. 

The boundary conditions are 

u(x,  0 )  = 0, v(x, 0) = 0, 
u(xo, z )  = - V(xo)  e-B/42sin ( ~ / , / 2 ) ,  

v(x0, z )  = V(xo) [i - e-Z/42cos (2/42)] ,  

u(x,co) = 0, v(x,co) = V(x) .  

(4) 

We observe that the conditions at xo are chosen such that u and v merge with the 
Ekman solution for x close to x,. It is assumed that the system (1)-(4) has 
a unique solution. 

We shall not reproduce the arguments used by Carrier (1971) to arrive a t  the 
modified Oseen linearization of (1) and (2) .  In  non-dimensional form, the 
equations are - 

- cv- DV 
u,, = -u- (1 +=) ( V -  V ) ,  C > 0, D > 0, 

X 
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and 5 and V are required to satisfy the boundary conditions (4). The positive 
constants C and D are to be determined a posteriori. In  Carrier (1971), C and D 
were chosen from some global conservation criterion to be g and $ respectively. 
Since in the subsequent error estimates we need the explicit solution of (5) and ( 6 ) ,  
and its region of validity, we shall first examine the solutions of these equations. 

3. The modified Oseen solution 
We combine (5) and (6 )  to  get 

We seek solutions of the form eb. In  a straightforward manner, we can calculate h 
as the roots of the algebraic equation 

We have 

The solutions of (7) can be classified into three types, depending on the sign of 
the discriminant. Since the discriminant may change sign for x in the range 
(xl, xo), it appears that all three types may be admissible. 

(i) If ( C V / ~ X ) ~  - (1 + DV/2x) = 0, then A2 has a double root. Hence the roots 
of (8) are real and of opposite sign. 

(ii) If (C V / ~ X ) ~  - (1 + D V/2x)  > 0, then A2, and A; are real and positive, so that 
(8) has two real positive roots and two real negative ones. 

(iii) If (CV/22)2- (1 +DV/2x) < 0, then A2, and A; are complex conjugates, 
and all roots of (8) are complex, two having positive real parts and the remaining 
two having negative real parts. In  fact, let 

a = cv/2x, p = [( 1 + DV/2x) - a214 

so that A!,2 = a i/? = ( a 2 + p 2 ) ~ e f i ~ ,  

where 6' = tan-lp/a, 0 < 8 < &r; then the roots with negative real parts are 

- (a2 + p2)i (cos +6' i sin &?) . 

In  view of the boundary conditions to be imposed a t  xo, it is clear that the 
type (iii) solution is appropriate, which requires ,132 > 0 at  least for x close to x,,. 
The condition at (xo,z) can be approximately satisjieied if C and D are of order 
unity and V(xo)/xo < 1, for then we have A;, 2(xo) = & i. The type (iii) solution 
then takes the form 

iZ = - V(a2 +p2) p-lexp ( - hlz) sin h2z  (91 

(10) 
- and 

where A,(%) = (a2++2)2 cos 40 and A2(x) = (a2+p2)'sin $8. We observe that, if 

v = V -  V exp ( - h,z) cosh,z - V cot 8 exp ( - h,z) sin h2z, 
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p2 > 0 (0 > 0) for x in (xl,xo), then we have the type (iii) solution in the entire 
interval of interest. If p2 is positive for d < xo but vanishes (0 = 0) at 5, the type 
(iii) solution holds for 2 < x < x,. Since A, vanishes with p, an application of 
L’Hospital’s rule shows that 

Jim ii = ia8.z exp ( - ab). 

For x1 < x < Z, it is clear that the type (iii) solution no longer applies. Further, 
for any given constants C and D such that p2 exhibits the above property, it 
follows from the fact that V/x  is a decreasing function of x that the type (iii) 
solution does not merge into a type (ii) solution on crossing 2. For this reason, 
we require the constants C and D to be so chosen that the type (iii) solution 
prevails in (x,, xo). 

-2 

4. The determination of C and D 

p2 > 0 for x in (xl, xo) then yields the relation 
In the following, we shall consider for simplicity V(x)  = 1 - x/xo. The condition 

$C2V/x - +D < x/V.  

Since a t  x = xl the term on the left attains its maximum value while x/V attains 
its minimum, the inequality will hold for x1 < z < xo if 

&C2V(x,)/x,- &D < x,/V(xJ. 

Further, since we do not expect the type (iii) solution to hold for x < x,, we let 
p = 0 at x,, so that the equality sign holds in the above expression. Rearranging, 
we have 

If xo 

c2 = 2x1[2x,x, + D(xo - xl)]/(xO -XI). 

x,, then roughly we have 

c2 = 2x,(2x1+D). (11) 

The determination of the constants C and D is perforce somewhat arbitrary. 
However, in so far as is possible, we should like to achieve internal consistency. 
We observe that from (1) we have 

U,,(O, x) = V(1 + V/22) .  

It seems reasonable that we ask Tizz to satisfy such a condition also. Since 
- 
uzz = V(a2+/82) = V(1 +DV/2x), 

we choose D = 1. It then follows from (1 1) that C is determined by x,. 
To decide on a suitable value for x,, we have to consider the structure of the 

hurricane model; see Fendell (1974). For a typical hurricane whose radial extent 
is O(500 miles), the radius of the eye is O(20 miles). The eye is surrounded by an 
eyewall, an annulus approximately 10 miles wide. In  the eyewall, both the swirl 
and the radial inflow decrease rapidly from O( 1) a t  the outer edge to near zero a t  
the eye radius. Since we are interested only in that part of the hurricane where 
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FIGURE 1. Radial velocity profile 'li. 

V ,  < 0, x1 should be no smaller than the outer radius of the eyewall. Guided by 
the work of Carrier et al. (1971), we choose 

x0 = 20, x1 = 0.4, 

which gives c = 1.2. 

If xo corresponds to 500 miles, then x1 corresponds to 70 miles, which is a safe 
distance outside the eyewall. 

With C = 1.2 and D = 1, the functions ii and 5 are completely determined. 
A vertical velocity iZ can be calculated from ii according to the continuity 
equation. These results are presented in figures 1-3. The question we now pose is 
how good are ii, V and W as approximations to the solution of the boundary-value 
problem (1)-(4) ? We observe that the linearized solutions ti and 5 satisfy all the 
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FIGURE 2. Circumferential velocity profile V. 

boundary conditions imposed on the solution of (1)-(4). Thus, in a vicinity of the 
boundary, U and ;ij necessarily approximate the true solution. 

Now, questions such as the above can be asked of all linearization or approxi- 
mation schemes. A completely rigorous answer, if one can be found, in general 
leads to mathematical problems that are just as intractable as the solution of the 
original nonlinear boundary-value problem. Thus it is not unexpected that only 
a partial answer can be achieved. 
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FIGURE 3. Vertical velocity Z(x, co) at  the top of the boundary layer. 

5. The Nagumo lemma 
There exist in the literature a number of comparison theorems for differential 

equations. For parabolic equations, the central result is due to Nagumo and 
Westphal (see Walter 1970, p. 187). This result has been used by a number of 
authors to study the qualitative properties of fluid-mechanical problems, and 
references to them can be found in the review article by Nickel (1973). Equations 
(1)  and (2) are not parabolic because of the dependence of w on u and v, and so the 
comparison theorem is not readily applicable. While it is possible to cast (1) and 
(2) into a parabolic system by using the von Mises transformation 

$(x, 2) = J;u(x,s) & 

and treat u and v as functions of (x, $) instead of (x, z), the domain in the x, $ 
plane becomes indeterminate as we have no apriori knowledge of the extent in $. 
Thus the gain in simplifying the system is offset. 

We observe that the proof of the Nagumo lemma is itself based on a lemma 
comparing two functions, which is independent of the type of equation they 
satisfy. It is this basic lemma that we shall make use of. For completeness, we 
state the lemma and the necessary definitions suited to our purpose. The proof 
can be found in Walter (1970, p. 185). 

Definition. G, = (0 < t < T, 0 < z < z(t)), 
B, = (t = 0, z = 0,  2 = Z ( t ) ) ,  

a, = Gp+Rp. 

Definition. The function $(t, z )  belongs to the class 2, if it is defined and con- 
tinuous in Gp and has continuous derivatives & 

Lemma. Consider two functions $I and $EZ, and suppose that if qi = $, 
q5# = $# and q5zz < +zB at a point in G, then q5t < $t a t  this point; then we have 
precisely one of the following cases: 

and q5zz in G,. 

(a) q5 < 1c. in Q,. 
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(p) There exists a maximal f (0 < f < T) such that $ < $ for all points in G, 
with t < 6 thus there is a sequence of points (tk,  zlk)) E Gp, tk > f, with 

$( tk ,Z(k ) )  2 W k , Z ( k ) ) ,  k = 1 3 %  a * ' ,  

such that, as k-too, ( t k , q k ) ) - f ( f , Z ) ~ R p .  
The essence of (p) is that the inequality 9 < $ also holds for t = f and that 

consequently (tk, always approach a boundary point. 
In  using the above lemma to answer our question, we proceed as follows. If we 

can find functions G, u*, u" and v* such that the solutions u and v of the nonlinear 
problem (1)-(4) satisfy 

then we can assess the goodness of the linearized solutions ii and 3 by comparing 
them with ii, u*, v" and v*. For obvious reasons, u* and 6 are referred to as the 
upper and lower solutions for u respectively, and similarly for v* and v". Of course, 
if the upper and lower solutions are not sharp, considerable uncertainty will 
remain. 

.ii < u < u*, v" < v < v*, 

6. The construction of upper and lower solutions 

variables 

Equations (l), (2) and (3) become 

To cast the system (1)-(4) into a suitable form, we introduce the change of 

t = 20-x, $(t ,z)  = -u(x,z). 

$vt + {WV, - $ - vzz> = 0, (14) 

$t+% = 0, (15) 

and the region of interest is Gp = (0 < t < 19.6; 0 < z < m}. In  terms of the new 
variables, (5) and (6) become 

= 2(20-t) V(t) 7t('f2(20--t) v(t) ) (3- V ) ,  

(17) 
- - 

v,, = -$. 

Since $ is required by the boundary conditions to merge with the Ekman solution 
as t -+ 0, it is clear that there exists a region adjacent to z = 0, at least in a 
neighbourhood oft = 0, such that # > 0. Specifically, we have $ > 0 for 0 < t < t,, 
0 < z < Z( t ) ,  where t ,  and Z are positive quantities, whose values have yet to 
be found. Further, since 7 > 0 for 0 < z < "/A2, 0 < t < 19.6, it is clear that 
in the subdomain 

61p = {O < t < t,, o < z < min(n/A,,?)} 

one can find positive quantities kl and k2 such that 

6 = (1-k2)$ < $ < ( l+k , )$  = $*. 
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Similarly, one can find positive quantities h, and h, such that 

Z = (1-h,)8 < v < (I+h,)Z = v*. (19) 

In this subdomain, whose existence we have postulated but whose extent we do 
not yet know, all functions considered are assumed differentiable as many times 
as required; hence they are in 2,. The lemma can therefore be applied to compare 
$* and 6 with 4, and Zand ZI* with v. What we propose to do is to use the condition 
of the lemma to determine the extent of op. Before proceeding, we note that the 
upper and lower solutions are sought in terms of multiples of the linear solutions 
$ and 8. Thus, if we should find k, = k, = 0.5, then we can say that approximating 
$ by 7 incurs a maximum error of 50 %. Moreover, i t  is clear that since 7 and ;ii 
satisfy the same conditions as $ and v at t = 0 and z = 0, it is expected that 
h,, h,, k, and k, would be small in that vicinity. 

If we now apply the lemma to compare q5* and 6 with $, and v* and v" with v, 
we obtain the four expressions q5t - q5?, q5t - &, vt - v? and vt - Gt, which contain 
the four parameters h,, h,, k, and k,. Our objective then is to search for the 
smallest values of these parameters such that the four inequalities 

- 

q5t-q5t* < 0, (&--$Jt > 0, vt-vt* < 0, vt+t > 0 

hold in as large a subdomain as possible. Thus we attempt to use the comparison 
lemma not merely as a gauging device, but in the actual construction of upper 
and lower solutions. 

Since the quantities q5t - $?, etc. depend explicitly on the vertical velocity w, 
about which little is known, we have to make some assumptions about win order 
to proceed. As observed before, 7 is expected to be a good approximation of q5 in 
a neighbourhood of t = 0. Hence, in that neighbourhood at least, the quantity 

should approximate w. The expression for W is rather unwieldy, and is given in 
the appendix. We use it as a guide to arrive a t  the assumption 

IwI < 0.05[1-exp(-hlz)] = w*,  (20) 

which should be a reasonable bound for a wide range oft. 
At this point, we must decide whether to let the parameters h,, h,, k, and k, 

be functions of t  and z, or constants. In  the first case, the inequalities will lead 
to inequalities involving the derivatives of the parameters, which would be 
exceedingly difficult to handle. In  the second case, only the parameters them- 
selves enter into consideration. What we can do, of course, is to assume that the 
parameters may depend on t and z but that their derivatives are so small that 
they can be ignored. We shall adopt this approach in the following computations. 

7. The computation of h,, h,, k, and k, 
We &st observe that Za > 0 for h,z in the range 

o < ~ , z  < gn+ ae, 
5 0  



786 K .  K .  Tarn 

a result readily obtainable from (10). For V(t) = SEt, 8 = tan-,@/& lies between 
0 and in. Hence we have 7 > 0 for h2z in that range also. In  the following, we 
shall restrict z as in (21). 

Now, to compare q5 with q5*, it follows from (13) that, if q5 = q5*, q5z = q5: and 
q5zz < $2 at a point in Gp, then 

a t  that point. Using (16) and (18)-(ZO), we have 

v2 - 52 - q5 *2 
- ( V - 5) - $2) , 9*(q5t-q53 < -(q5*#-.*l$Zt - 2 ( 2 0 - t )  

- ( 1 + k d  (I+-) (V- V) 3 I,. " )  
Similarly, if q5 = 6, q5z = fi, and q5zz 2 fizz at a point in op, then as long as 6 > 0, 
that is 1 - k2 > 0, we have 

V2 

2(20 - t )  6ck- $4 < (1 - u27& + 0*05[1 -exp ( - h, z ) l (1 -  k,) Iiq -- 
( 1 + h,)2 52 (1 -k2)272 

+ 2 ( 2 0 - t )  - V + ( l + h , ) @ +  2 ( 2 0 - t )  

Applying the comparison lemma to v and v*, we have that, if v = v*, v, = v,* and 
vzz < v,*, a t  a point in op, then 

$(Vt*-Vt) > (l+hl)g@t-- " - k1 3 - 0-05( 1 + h,) [ 1 - exp ( - A,z)] 5, = Is. 
l + k l  l - k 2  

Finally, if v = v, EB = EZ and vzz 2 Ezz at a point in op, then 

6(5t--t) < (1 -h2) (1 - k2)7%+ P 2 -  h2) 7 
+ 0.05[1- exp ( - h,z)] (1 - h2) Gz = 14- 

To recapitulate, our objective is to search for the smallest parameters h,, h,, k, 
and k, such that Il 2 0, 1, < 0, I3 2 0 and < 0 in as large a subdomain of the 
region 

as possible. 
We cover R by a grid. The mesh size in z is 0.1, and the mesh size in t is 2 for 

t = 2-18 and 0.1 otherwise, Numerical computations are performed a t  the grid 
points. The parameters h, and h, are assigned the values 0.1, 0-2 ,  . . . ,Om5 and the 
parameters k, and k, are assigned the values 0-1,0-2,  ..., 0.7. Each combination 

R = (0 < t < 19.6, o < < ( 2 h 2 ) - y n + e ) )  
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2 t = 2  t = 4  t = 6  t = 8  

0.1 (0.1, 0.1, 0.2, 0.2) 
0.2 (0.1, 0.1, 0.2, 0.2) 
0.3 (0.1, 0-1, 0.2, 0-2) 
0.4 (0.1, 0.1, 0.2, 0-2) 
0.5 (0.1, 0.1, 0.2, 0.2) 
0.6 (0.1, 0.1, 0.2, 0.2) 
0.7 (0.1, 0.1, 0.2, 0.2) 
0.8 (0.1, 0.1, 0.2, 0.2) 
0.9 (0.1, 0.1, 0.2, 0.2) 
1.0 (0.1, 0.1, 0.2, 0.2) 
1.1 (0.1, 0.1, 0.2, 0.3) 
1.2 (0.1, 0.1, 0.3, 0.3) 
1.3 (0.1, 0.1, 0.3, 0.4) 
1.4 (0.1, 0.1, 0.4, 0.4) 

(0.1, 0.1, 0.2, 0.2) 
(0.1, 0.1, 0.2, 0.2) 
(0.1, 0.1, 0.2, 0.2) 
(0.1, 0.1, 0.2, 0.2) 
(0.1, 0.1, 0.2. 0.2) 
(0.1, 0.1, 0.2, 0.2) 
(0.1, 0.1, 0.2, 0.2) 
(0.1, 0.1, 0.2, 0.2) 
(0.1, 0.1, 0.2, 0.2) 
(0.1, 0.1, 0.2, 0.2) 
(0.1, 0.1, 0.2, 0-3) 
(0.1, 0.1, 0.3, 0.3) 
(0.1, 0.1, 0.3, 0.4) 
(0.1, 0.1, 0.4, 0.4) 

(0.1, 0.1, 0.2, 0.2) 
(0.1, 0.1, 0.2, 0.2) 
(0.1, 0.1, 0.2, 0.2) 
(0.1, 0.1, 0.2, 0.2) 
(0.1, 0.1, 0.2, 0.2) 
(0.1, 0.1, 0.2, 0.2)  
(0.1, 0.1, 0.2, 0.2) 
(0.1, 0.1, 0.2, 0.2) 
(0.1, 0.1, 0.2, 0.2) 
(0.1, 0.1, 0.2, 0.2) 
(0.1, 0.1, 0.2, 0.2) 
(0.1, 0.1, 0.3, 0.3) 
(0.1, 0.1, 0.3, 0.4) 
(0.1, 0.1, 0.4, 0.4) 

(0.1, 0.1, 0.2, 0.2) 
(0.1, 0.1, 0-2, 0.2) 
(0.1, 0.1, 0.2, 0.2) 
(0.1, 0.1, 0-2, 0.2) 
(0.1, 0.1, 0.2, 0.2) 
(0.1, 0.1, 0.2, 0.2) 
(0.1, 0.1, 0.2, 0.2) 
(0.1, 0.1, 0.2, 0.2) 
(0.1, 0.1, 0.2, 0.2) 
(0.1, 0.1, 0.2, 0.2) 
(0.1, 0.1, 0.3, 0.2) 
(0.1, 0.1, 0.3, 0.3) 
(0.1, 0.1, 0.4, 0-3) 
(0.1, 0.1, 0.4, 0.4) 

z t = 10 t = 12 t = 14 t = 16 

0.1 (0.1, 0.1, 0.2, 0.2) (0.1, 0.1, 0.2, 0.2) (0.1, 0.1, 0.2, 0.2) (0.1, 0.1, 0.2, 0.2) 
0.2 (0.1, 0.1, 0.2, 0.2) (0.1, 0.1, 0.2, 0.2) (0.1, 0-1, 0.2, 0.2) (0.1, 0.1, 0.2, 0.2) 
0.3 (0.1, 0.1, 0.2, 0.2) (0.1, 0.1, 0.2, 0.2) (0.1, 0.1, 0.2, 0.2) (0.1, 0.1, 0.2, 0.2) 
0.4 (0.1, 0.1, 0.2, 0.2) (0.1, 0.1, 0.2, 0.2) (0.1, 0.1, 0.2, 0.2) (0.1, 0.1, 0.2, 0.2) 
0-5 (0.1, 0.1, 0.2, 0.2) (0.1, 0.1, 0.2, 0.2) (0.1, 0.1, 0.2, 0.2) (0.1, 0-1, 0.2, 0.2) 
0.6 (0.1, 0.1, 0.2, 0.2) (0.1, 0.1, 0.2, 0.2) (0.1, 0-1, 0-2, 0.2) (0.1, 0.1, 0.2, 0-2) 
0.7 (0.1, 0.1, 0.2, 0.2) (0.1. 0.1, 0.2, 0.2) (0.1, 0.1, 0.2, 0.2) (0.1, 0.1, 0.2, 0.2) 
0.8 (0.1, 0.1, 0-2, 0.2) (0.1, 0.1, 0.2, 0.2) (0.1, 0.1, 0.2, 0.2) (0.1, 0.1, 0.2, 0.2)  
0.9 (0.1, 0.1, 0.2, 0.2) (0.1, 0-1, 0.2, 0.2) (0.1, 0.2, 0.2, 0.2) (0.1, 0.1, 0.3, 0.2) 
1.0 (0.1, 0.1, 0.2, 0.2) (0.1, 0.1, 0.2, 0.2) (0.1, 0.1, 0.3, 0-2) (0.1, 0.1, 0.3, 0.2) 
1.1 (0.1, 0.1, 0.3, 0.2) (0.1, 0.1, 0.3, 0.2) (0.1, 0.1, 0.3, 0.2) (0.1, 0.1, 0.4, 0.2) 
1.2 (0.1, 0.1, 0.3, 0.3) (0.1, 0.1, 0.3, 0.3) (0.1, 0.1, 0.4, 0.2) (0.1, 0.1, 0.4, 0.2) 
1.3 (0.1, 0.1, 0.4, 0.3) (0.1, 0.1, 0.4, 0.3) (0.1, 0.1, 0.4, 0.3) 
1.4 (0.1, 0.1, 0.4, 0.4) 

z t =  18 

0.1 (0.1, 0.1, 0.2, 0.2) 
0.2 (0.1, 0.1, 0.2, 0.2) 
0.3 (0.1, 0.1, 0.2, 0.2) 
0.4 (0.1, 0.1, 0.2, 0.2) 
0.5 (0.1, 0.1, 0.2, 0.2) 
0.6 (0.1, 0.1, 0-2, 0.3) 
0.7 (0.1, 0.1, 0.3, 0.2) 
0.8 (0.1, 0.1, 0.3, 0.2) 
0.9 (0.1, 0.1, 0.4, 0.2) 
1.0 (0.1, 0.1, 0.4, 0.2) 
1.1 
1.2 
1.3 
1.4 
1 *6 

t = 18.3 

(0.1, 0.1, 0.2, 0.2) 
(0.1, 0-1, 0.2, 0.2) 
(0.1, 0.1, 0.2, 0-2) 
(0.1, 0.1, 0.2, 0.2) 
(0.1, 0.1, 0.2, 0.2) 
(0.1, 0.1, 0.3, 0.2) 
(0.1, 0.1, 0.3, 0.2) 
(0.1, 0.1, 0.3, 0.2) 
(0.1, 0.1, 0.4, 0.2) 
(0.1, 0.1, 0-4, 0-2) 

t = 18.6 

(0.1, 0.1, 0.2, 0.2) 
(0.1, 0.1, 0.2, 0.2) 
(0.1, 0.1, 0.2, 0.2) 
(0.1, 0.1, 0.2, 0.2) 
(0.1, 0.1, 0.2, 0.2) 
(0.1, 0.1, 0.2, 0.3) 
(0.1, 0.1, 0.3, 0.2) 
(0.1, 0.1, 0.3, 0.2) 
(0.1, 0.1, 0.3, 0.3) 
(0.1, 0.1, 0.4, 0-2)  
(0.1, 0.1, 0.4, 0.2) 

t = 18.9 

(0.1, 0.1, 0.2, 0.2)  
(0.1, 0.1, 0.2, 0.2) 
(0.1, 0.1, 0.2, 0.2) 
(0.1, 0.1, 0.2, 0.2) 
(0.1, 0.1, 0.2, 0.2) 
(0.1, 0.1, 0.2, 0.2) 
(0.1, 0.1, 0.2, 0.2) 
(0.1, 0.1, 0.2, 0.2) 
(0.1, 0.1, 0.2, 0.3) 
(0.1, 0-1, 0.3, 0.2) 
(0.1, 0.1, 0.3, 0.2) 
(0.1, 0.1, 0.3, 0.2) 
(0.1, 0.1, 0.3, 0.4) 
(0.1, 0.1, 0.4, 0-2) 
(0.1, 0.1, 0.4, 0.3) 
Y 

TABLE 1. Tabulation of the 4-tuple (El, K , ,  b,, z,) in G ,  

50-2 
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z 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0-7 
0.8 
0.9 
1-0 
1.1 
1.2 
1-3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 

t = 19.1 
(0-1, 0.1, 0.2, 0.2) 
(0.1, 0.1, 0.2, 0.2) 
(0.1, 0.1, 0.2, 0.2) 
(0.1, 0.1, 0.2, 0.2) 
(0.1, 0.1, 0.2, 0.2) 
(0.1, 0.1, 0.2, 0.2) 
(0.1, 0.1, 0.2, 0.2) 
(0.1, 0.1, 0.2, 0-2) 
(0.1, 0.1, 0-2, 0.2) 
(0.1, 0.1, 0-2, 0.2) 
(0.1, 0.1, 0.2, 0.2) 
(0.1, 0.1, 0.2, 0-2) 
(0.1, 0.1, 0.2, 0.2) 
(0.1, 0.1, 0.3, 0.2) 
(0.1, 0.1, 0.3, 0.2) 
(0.1, 0.1, 0-3, 0.2) 
(0.1, 0.1, 0.3, 0.3) 
(0.1, 0.1, 0.3, 0.4) 
(0-1, 0.1, 0.4, 0.4) 

t = 19.2 
(0.1, 0.1, 0.2, 0.2) 
(0.1, 0.1, 0.2, 0.2) 
(0.1, 0.1, 0.2, 0.2) 
(0.1, 0.1, 0.2, 0.2) 
(0.1, 0.1, 0.2, 0.2) 
(0.1, 0.1, 0-2, 0-2) 
(0.1, 0.1, 0.2, 0.2) 
(0.1, 0.1, 0.2, 0.2) 
(0.1, 0.1, 0.2, 0.2) 
(0.1, 0-1, 0.3, 0.2) 
(0.1, 0.1, 0.3, 0.2) 
(0.1, 0.1, 0.3, 0.2) 
(0.1, 0.1, 0.3, 0.2) 
(0.1, 0-1, 0.3, 0.3) 
(0.1, 0.1, 0.3, 0.3) 
(0.1, 0.1, 0.3, 0-3) 
(0.1, 0.1, 0.3, 0.3) 
(0.1, 0.1, 0.3, 0.4) 
(0.1, 0.1, 0.3, 0.4) 

t = 19.3 

(0.1, 0.1, 0.2, 0.2) 
(0.1, 0.1, 0.2, 0-2) 
(0.1, 0.1, 0.2, 0.2) 

t = 19.4 
(0.1, 0.1, 0-2, 0.2) 
(0.1, 0.1, 0.2, 0.2) 
(0.1, 0.1, 0.2, 0.2) 

(0.1, 0.1, 0.2, 0-2) 
(0.1, 0.1, 0.2, 0.2) 
(0.1, 0.1, 0.2, 0.2) 
(0.1, 0.1, 0.3, 0.3) 
(0.1, 0.1, 0.3, 0.3) 
(0.1, 0.1, 0.3, 0.3) 
(0.1, 0.1, 0.3, 0.3) 
(0.1, 0.1, 0.3, 0.3) 
(0.1, 0.1, 0.3, 0.3) 
(0.1, 0.1, 0.3, 0.4) 
(0.1, 0.1, 0.3, 0.4) 
(0.1, 0.1, 0.3, 0.4) 
(0.1, 0.1, 0.3, 0.4) 
(0.1, 0.1, 0.3, 0.4) 
(0.1, 0.1, 0.3, 0.4) 

(0.1, 0.1, 0-3, 0.3) 
(0.1, 0.1, 0.3, 0.3) 
(0-1, 0.1, 0-3, 0-4) 
(0.1, 0.1, 0-3, 0.4) 
(0.1, 0.1, 0.3, 0.4) 
(0.1, 0-1, 0.3, 0.4) 

TABLE 1 (cont.) 

of h,, h,, k, and k, that satisfies the four inequalities simultaneously is printed out. 
As expected, at a given t < 19.6, the number of admissible combinations is large 
for z < 1, and h,, h,, k, and k, take on relatively small values. As z increases, the 
number of admissible combinations decreases rapidly, with k, and k, taking 
larger values. For z > 1.5, virtually no combination within the assigned para- 
meter range is possible. In  table 1, we list the combinations with the smallest 
value for each parameter a t  each grid point, for a few representative values oft. 
Those grid points (for a fixed t )  with any parameter in the combination larger 
than 0-4 are left out. 

We conclude from the numerical results that in the subdomain 

Gp = (0 < t < 19.4, 0 < z < Z}, 

where Z is the largest value of z listed in table 1, the conditions required by the 
lemma for the comparison of 9 with +* and 6, and v with v* and v" are satisfied. 
Further, for any given arbitrarily small E > 0, if we now set 

(22) 

the inequalities 1, > 0, 1, < 0, I, > 0 and I4 < 0 still hold. With this modification, 
it is clear that 

at t = 0 and z = 0. By our construction, we have 

I $i5* = ( l + E , ) $ + € ,  $ =  (1-E2)$-€, 
v* = ( l + E , ) V + € ,  v" = ( l - E , ) V - € ,  

$ < # < # * ,  v " < v < v *  

$(t, 1) < d(t, 2) < $*(t, Z), 

q t ,  1) < v(t, 1) < v*(t, Z), 
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thus alternative (p) of the lemma cannot hold. We summarize our results in the 
following statement. 

Statement. Under the assumption that I wI < 0.05( 1 - exp ( - h,z)], the solu- 
tions q5 and w of the boundary-value problem (1)-(4) satisfy the inequalities 

) in Qp, 
( l - E z ) $ - €  < q5 < (1+E,)$+€ 
(1--Ez)Z-€ < 0 < (1+E1)V+€ 

where c is arbitrarily small, 3 and Z are as given in (9) and (lo), and El, &, I,, &a 
and Qp are as described in table 1. 

8. Concluding remarks 
(1) It is clear that, while Gp does not extend very far in the vertical direction, 

its thickness is of the order of the e-folding thickness l/hl of the boundary layer. 
Also, the inequalities used in the computation of h,, etc., are obtained by making 
some ‘overpowering’ majorizations. It is thus not unreasonable to expect that, 
within the percentage error range given by El, etc., QD may extend further in the 
z direction. 

(ii) Since $ decays exponentially in the z direction, and 4 is expected to have 
the same behaviour, the downdraft (or updraft) 

w(x, a) = -lorn 6,dz 

receives its major contribution from 

where a = O( 1). From the bounds constructed, we infer that 

approximates w(x,m) to the same degree of accuracy as $ approximates 4, 
which is about 

(iii) Since the determination of C is not as clear cut as that for D, we have 
performed similar, though less extensive, calculations for neighbouring values 
of C. No drastic departure occurs, but the smaller the value of C, the closer to 
the eye is the reversal of the downdraft into a stronger updraft. For 
0.866 < C < 1.414, the error bounds are more or less the same as reported. 
Since a smaller C implies a smaller zl, and hence a smaller eye, this trend seems 
consistent with the observation that “the more intense storm might generally 
have a relatively small eye” (Fendell 1974). 

(iv) We have used a comparison theorem for the purpose of constructing 
upper and lower solutions. We believe this procedure can be exploited in similar 
problems, and indeed have used it to consider a few other examples. 

30 yo in 0 < t < 19.4. 

This work was initiated in 1972 while the author was visiting Harvard 
University. The general conclusion reached in this paper has been cited by 
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Fendell (1974). The author thanks Professor George Carrier for suggesting the 
problem, and for many stimulating discussions. Thanks are also due to M i  P. Chu 
for doing the computations. Continuing support from the National Research 
Council of Canada is acknowledged. 

Appendix 

in the computation of I,, . . . , Id. 
We list here a number of quantities obtained from 7 and U which are required 

W ( x ,  x )  = W(x, 00) [I - exp ( - h,z) cos h,z] 

P [ 2 d x  dh ax 1 ah 
exp(-h,z) xcosh z-’+zsinh,z-’ ) 

A, V(a2 + p”+ + 

where W(x,0O) = - 
d x  

z exp ( - h,x) 

x cosh z 2 - s i n h  

V(aZ+P2) 
P 

d h  ( ‘ d t  

exp ( - h,z) sin h,z + 

- 
$z = ~ ( a ~ + ~ 2 ) ~ ~ - 1 e x p ( - h 1 z ) s i n ( ~ 8 - h , z ) ,  

vt = -[l -exp ( - h , z )  cosh2x] +exp (-h,x)sinh,z --cot 8+ -- 
sin2 0 d t  

- 

+zexp(-h,z)sinh,z 

- Vexp(-h,z) 
v, = (A ,  sin h,z cos A,z). 

sin 8 

The values of a) P, 8, A, and A, are given in 3 3. 
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